komplexe Zahlen

Aufgabe 1 Es seien gegeben $z_1 = 1 + 3i$ und $z_2 = 2 - i$. Berechnen Sie folgenden Ausdrücke und geben Sie jeweils Realteil und Imaginärteil vom Ergebnis an:

(a)
$$z_1 \cdot z_2 + 5$$
.

(c)
$$z_2 \cdot i^{10}$$
.

(b)
$$\frac{z_1^2}{\overline{z_2}}$$
.

Aufgabe 2: komplexe Nullstellen Berechnen Sie die komplexen Lösungen der Gleichung $4z^2 - 6z + 5 = 2z$.

Aufgabe 3: Bogenmaß und Trigonometrie Zeichnen Sie einen Einheitskreis und zeichnen Sie die folgenden Winkel α ein. Anschließend ermitteln Sie $\cos(\alpha)$ und $\sin(\alpha)$.

(a)
$$\alpha = \frac{\pi}{4}$$

(c)
$$\alpha = \frac{5\pi}{6}$$
.

(b
$$\alpha = \frac{3\pi}{2}$$
.

Aufgabe 4: Polarkoordinaten

- (a) Sei $z = -1 + i = \sqrt{2}\cos(\frac{3}{4}\pi) + i\sqrt{2}\sin(\frac{3}{4}\pi) = \sqrt{2}e^{\frac{3\pi}{4}i}$. Berechnen Sie z^8 indem Sie die Potenzgesetze ausnutzen.
- (b) Bestimmen Sie die Polarkoordinaten von $w=1+i\sqrt{3}$ und berechnen Sie $w^6.$